Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity.

نویسندگان

  • Sufyan Ashhad
  • Rishikesh Narayanan
چکیده

The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density of A-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role of A-type potassium channels in regulating spike latency, we found that an increase in the density of A-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate that the presence of mGluRs induced a leftward shift in a Bienenstock-Cooper-Munro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bimodal Nature of Neurovascular Coupling

Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...

متن کامل

Waves of Calcium Depletion in the Sarcoplasmic Reticulum of Vascular Smooth Muscle Cells: An Inside View of Spatiotemporal Ca2+ Regulation

Agonist-stimulated smooth muscle Ca2+ waves regulate blood vessel tone and vasomotion. Previous studies employing cytoplasmic Ca2+ indicators revealed that these Ca2+ waves were stimulated by a combination of inositol 1,4,5-trisphosphate- and Ca2+ -induced Ca2+ release from the endo/sarcoplasmic reticulum. Herein, we present the first report of endothelin-1 stimulated waves of Ca2+ depletion fr...

متن کامل

Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons.

Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhanc...

متن کامل

Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons.

The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ channel that releases Ca2+ from internal Ca2+ stores in response to InsP3. Although InsP3R is highly expressed in various regions of the mammalian brain, the functional role of this receptor has not been clarified. We show here that cerebellar slices prepared from mice with a disrupted InsP3R type 1 gene, which is predo...

متن کامل

Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons.

Glutamatergic synapses on pyramidal neurons are formed on dendritic spines where glutamate activates ionotropic receptors, and calcium influx via N-methyl-d-aspartate receptors leads to a localized rise in spine calcium that is critical for the induction of synaptic plasticity. In the basolateral amygdala, activation of metabotropic receptors is also required for synaptic plasticity and amygdal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 591 7  شماره 

صفحات  -

تاریخ انتشار 2013